Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - Problems Plus - Problems - Page 353: 10

Answer

$\cos x\sqrt{1+(\sin x)^{4}}$

Work Step by Step

$\frac{d^{2}}{dx^{2}}\int_{0}^{x}\left(\int_{1}^{\sin t}\sqrt{1+u^{4}}du \right)dt$ $\frac{d}{dx}\left(\frac{d}{dx}\left(\int_{0}^{x}\left(\int_{1}^{\sin t}\sqrt{1+u^{4}}du \right) dt\right)\right)$ Suppose that $g(t)=\int_{1}^{\sin t}\sqrt{1+u^{4}}du$ it follows: $\frac{d}{dx}\left(\frac{d}{dx}\left(\int_{0}^{x}\left(\int_{1}^{\sin t}\sqrt{1+u^{4}}du \right) dt\right)\right)=\frac{d}{dx}\left(\frac{d}{dx}\left(\int_{0}^{x}g(t) dt\right)\right)$ Using the fundamental theorem of calculus it follows: $\frac{d}{dx}\left(\frac{d}{dx}\left(\int_{0}^{x}g(t) dt\right)\right)=\frac{d}{dx}\left(g(x)\right)$ We have $g(t)=\int_{1}^{\sin t}\sqrt{1+u^{4}}du \to g(x)=\int_{1}^{\sin x}\sqrt{1+u^{4}}du $ $\frac{d}{dx}\left(g(x)\right)=\frac{d}{dx}\left(\int_{1}^{\sin x}\sqrt{1+u^{4}}du\right)$ Use $\frac{d}{dx}\left(\int_{a}^{f(x)}h(u)du\right)=f'(x)h(f(x))$ it follows: $\frac{d}{dx}\left(\int_{1}^{\sin x}\sqrt{1+u^{4}}du\right)=(\sin x)'\sqrt{1+(\sin x)^{4}}$ $=\cos x\sqrt{1+(\sin x)^{4}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.