Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.5 The Substitution Rule - 4.5 Exercises - Page 347: 85

Answer

$$\frac{\pi^{2}}{4}$$

Work Step by Step

Given $$\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x $$ Since by Exercise 64 $$ \int_{0}^{\pi} x f(\sin x) d x =\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x $$ we get \begin{aligned} \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x&=\int_{0}^{\pi} x f(\sin x) d x\\ &=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x\\ &=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x \end{aligned} Let $ u=\cos x$, then $du=-\sin xdx$ and \begin{aligned} \text{at } \ x&= 0\ \ \to u = 1 \\ \text{at } \ x&=\pi\ \ \to u = -1 \end{aligned} It follows that \begin{aligned} \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x &=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x\\ &= -\frac{\pi}{2} \int_{1}^{-1} \frac{d u}{1+u^{2}}\\ &=\frac{\pi}{2} \int_{-1}^{1} \frac{d u}{1+u^{2}}\\ &=\frac{\pi}{2}\left[\tan ^{-1} u\right]_{-1}^{1}\\ &=\frac{\pi}{2}\left[\tan ^{-1} 1-\tan ^{-1}(-1)\right]\\ &=\frac{\pi}{2}\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]\\ &=\frac{\pi^{2}}{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.