## Calculus 8th Edition

Published by Cengage

# Chapter 4 - Integrals - 4.4 Indefinite Integrals and the Net Change Theorem - 4.4 Exercises: 2

#### Answer

Verify $\int\cos^2{x}dx=\frac{1}{2}x+\frac{1}{4}\sin{2x}+C$ We need to take the derivative of the right side of our equation and verify that it equals the expression inside of our integral. \begin{equation*} \frac{d}{dx}\left(\frac{1}{2}x+\frac{1}{4}\sin{2x}+C\right)=\frac{d}{dx}\left(\frac{1}{2}x\right)+\frac{d}{dx}\left(\frac{1}{4}\sin{2x}\right)+\frac{d}{dx}\left(C\right) \end{equation*} \begin{equation*} =\left(\frac{1}{2}\right)+\left(\frac{1}{4}\cos{2x}\times2\right)+\left(0\right) \end{equation*} \begin{equation*} =\frac{1}{2}+\frac{1}{2}\cos{2x}=\frac{1+\cos{2x}}{2}=\cos^2{x} \end{equation*} as desired.

#### Work Step by Step

Verify $\int\cos^2{x}dx=\frac{1}{2}x+\frac{1}{4}\sin{2x}+C$ We need to take the derivative of the right side of our equation and verify that it equals the expression inside of our integral. \begin{equation*} \frac{d}{dx}\left(\frac{1}{2}x+\frac{1}{4}\sin{2x}+C\right)=\frac{d}{dx}\left(\frac{1}{2}x\right)+\frac{d}{dx}\left(\frac{1}{4}\sin{2x}\right)+\frac{d}{dx}\left(C\right) \end{equation*} \begin{equation*} =\left(\frac{1}{2}\right)+\left(\frac{1}{4}\cos{2x}\times2\right)+\left(0\right) \end{equation*} \begin{equation*} =\frac{1}{2}+\frac{1}{2}\cos{2x}=\frac{1+\cos{2x}}{2}=\cos^2{x} \end{equation*} as desired.

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.