Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.3 The Fundamental Theorem of Calculus - 4.3 Exercises - Page 329: 67

Answer

$\displaystyle\lim_{n \to \infty}\sum_{n=1}^{\infty}\left(\frac{i^{4}}{n^5}+\frac{i}{n^2}\right)=\int_0^1(x^4+x)dx=\frac{7}{10}$

Work Step by Step

$$\begin{align*} \displaystyle\lim_{n \to \infty}\sum_{n=1}^{\infty}\left(\frac{i^{4}}{n^5}+\frac{i}{n^2}\right)&=\lim_{n \to \infty}\sum_{n=1}^{\infty}\left(\frac{i^{4}}{n^4}+\frac{i}{n}\right)\frac{1}{n}\\ &=\lim_{n \to \infty}\sum_{n=1}^{\infty}\left[\left(\frac{i}{n}\right)^4+\frac{i}{n}\right]\frac{1}{n}\\ &=\lim_{n \to \infty}\sum_{n=1}^{\infty}\left[\left(0+\frac{i}{n}\right)^4+\left(0+\frac{i}{n}\right)\right]\frac{1-0}{n}\\ &=\lim_{n \to \infty}\sum_{n=1}^{\infty}(x_i^4+x_i)\frac{1-0}{n}\\ &=\int_0^1(x^4+x)dx\\ &=\left[\frac{x^5}{5}+\frac{x^2}{2}\right]_0^1\\ &=\frac{7}{10} \end{align*}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.