Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 4 - Integrals - 4.3 The Fundamental Theorem of Calculus - 4.3 Exercises - Page 328: 62

Answer

$$\frac{3}{4\sqrt{5}}-\frac{\sqrt{5}}{4}$$

Work Step by Step

Given $$f(x)=\int_{0}^{\sin x} \sqrt{1+t^{2}} d t \text { and } g(y)=\int_{3}^{y} f(x) d x$$ By using the Fundamental Theorem of Calculus (1) \begin{aligned} f'(x)&=\frac{d}{dx}\int_{0}^{\sin x} \sqrt{1+t^{2}} d t\\ &= \sqrt{1+\sin^{2}x} \frac{d}{dx}(\sin (x))\\ &= \cos (x)\sqrt{1+\sin^{2}x} \end{aligned} and \begin{aligned} g'(y)&= \frac{d}{dx}\int_3^yf(y)dy\\ &= f'(y) \end{aligned} Then \begin{aligned} g''(y)&= f''(y) \\ \text{( i.e.)}, g''(x)&= f''(x) \end{aligned} Hence \begin{aligned} g''(x)&= f''(x)\\ &= \cos(x) \frac{d}{dx}\sqrt{1+\sin^2x}+ \sqrt{1+\sin^2x}\frac{d}{dx}(\cos x)\\ &= \cos(x)\cdot \frac{1}{2\sqrt{1+\sin^2x}}\frac{d}{dx}(1+\sin^2(x))+ \sqrt{1+\sin^2x}\frac{d}{dx}(\cos(x))\\ &= \frac{2\sin \left(x\right)\cos(x)\cos \left(x\right)}{2\sqrt{1+\sin ^2\left(x\right)}}-\sin \left(x\right)\sqrt{1+\sin ^2\left(x\right)}\\ &= \frac{\sin \left(2x\right)\cos \left(x\right)}{2\sqrt{1+\sin ^2\left(x\right)}}-\sin \left(x\right)\sqrt{1+\sin ^2\left(x\right)} \end{aligned} It follows that \begin{aligned} g''(\pi /6) &= \frac{\sin \left(\pi /3\right)\cos \left(\pi /6\right)}{2\sqrt{1+\sin ^2\left(\pi /6\right)}}-\sin \left(\pi /6\right)\sqrt{1+\sin ^2\left(\pi /6\right)}\\ &= \frac{\left(\sqrt{3} /2\right) \left(\sqrt{3}/2\right)}{2\sqrt{1+ \left(1/4\right)}}-\left(1/2\right)\sqrt{1+\left(1 /4\right)}\\ &=\frac{3}{4\sqrt{5}}-\frac{\sqrt{5}}{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.