Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - Problems Plus - Problems - Page 290: 1

Answer

Show that $$ |\sin x-\cos x| \leq \sqrt{2}, \text { for all } x $$ Let $$ f(x)=\sin x-\cos x, \text { on }[0,2 \pi] $$ since $f$ has period $2 \pi $ $$ f^{\prime}(x)=\cos x+\sin x=0 $$ $ \Leftrightarrow $ $$ \cos x=-\sin x, \Leftrightarrow \tan x=-1 $$ $ \Leftrightarrow $ $$ x=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4} $$ Evaluating $f $ at its critical numbers and endpoints, we get $$ f(0)=-1, f\left(\frac{3 \pi}{4}\right)=\sqrt{2} \\ f\left(\frac{7 \pi}{4}\right)=-\sqrt{2} \text { and } f(2 \pi)=-1 $$ So $f$ has absolute maximum value $ \sqrt{2} $ and absolute minimum value $-\sqrt{2}$. Thus, $$ -\sqrt{2} \leq \sin x-\cos x \leq \sqrt{2} \Rightarrow|\sin x-\cos x| \leq \sqrt{2} . $$

Work Step by Step

Show that $$ |\sin x-\cos x| \leq \sqrt{2}, \text { for all } x $$ Let $$ f(x)=\sin x-\cos x, \text { on }[0,2 \pi] $$ since $f$ has period $2 \pi $ $$ f^{\prime}(x)=\cos x+\sin x=0 $$ $ \Leftrightarrow $ $$ \cos x=-\sin x, \Leftrightarrow \tan x=-1 $$ $ \Leftrightarrow $ $$ x=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4} $$ Evaluating $f $ at its critical numbers and endpoints, we get $$ f(0)=-1, f\left(\frac{3 \pi}{4}\right)=\sqrt{2} \\ f\left(\frac{7 \pi}{4}\right)=-\sqrt{2} \text { and } f(2 \pi)=-1 $$ So $f$ has absolute maximum value $ \sqrt{2} $ and absolute minimum value $-\sqrt{2}$. Thus, $$ -\sqrt{2} \leq \sin x-\cos x \leq \sqrt{2} \Rightarrow|\sin x-\cos x| \leq \sqrt{2} . $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.