Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.4 Limits at Infinity; Horizontal Asymptotes - 3.4 Exercises - Page 242: 43

Answer

(a) 0 (b) does not exist (either $\infty$ or $-\infty$)

Work Step by Step

Let \[P(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n\] and \[Q(x)=b_0+b_1x+b_2x^2+\cdots+b_mx^m\] Let \[L=\lim_{x\rightarrow\infty}\frac{P(x)}{Q(x)}\] (a) Let $deg P(x)deg Q(x)\;\;\;,\;\;\; $i.e., $n>m$ \[L=\lim_{x\rightarrow\infty}\frac{P(x)}{Q(x)}\] \[\Rightarrow L=\lim_{x\rightarrow\infty}\frac{a_0+a_1x+a_2x^2+\cdots+a_mx^m+a_{m+1}x^{m+1}+\cdots+a_nx^n}{b_0+b_1x+b_2x^2+\cdots+b_mx^m}\] Since $n>m$ Divide numerator and denominator by $x^m$ \[\Rightarrow L=\lim_{x\rightarrow\infty}\frac{\displaystyle\frac{a_0}{x^m}+\displaystyle\frac{a_1}{x^{m-1}}+\displaystyle\frac{a_2}{x^{m-1}}+\cdots+\displaystyle a_m+a_{m+1}x+\cdots+a_nx^{n-m}}{\displaystyle\frac{b_0}{x^m}+\frac{b_1}{x^{m-1}}+\frac{b_2}{x^{m-2}}+\cdots+b_m}\] \[L=\frac{0+0+\cdots+0+a_m+\infty+\infty+\cdots\infty}{0+0+\cdots+0+b_m}\] \[\Rightarrow L=\infty\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.