Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 3 - Applications of Differentiation - 3.1 Maximum and Minimum Values - 3.1 Execises - Page 212: 55

Answer

$$ f(t)=2\cos t + \sin 2t, \text { on } \,\, [0, \frac{\pi}{2}] $$ The absolute maximum value is $$ f\left(\frac{\pi}{6}\right)=\frac{3}{2}\sqrt{3} \approx 2.60, $$ and the absolute minimum value is $$ f(\frac{\pi}{2})=0. $$

Work Step by Step

$$ f(t)=2\cos t + \sin 2t, \text { on } \,\, [0, \frac{\pi}{2}] $$ Since $ f$ is continuous on $ [0, \frac{\pi}{2}], $ we can use the Closed Interval Method: $$ f(t)=2\cos t + \sin 2t, $$ $$ \begin{aligned} f^{\prime}(t) &=-2 \sin t+\cos 2 t \cdot 2 \\ &=-2 \sin t+2\left(1-2 \sin ^{2} t\right) \\ &=-2\left(2 \sin ^{2} t+\sin t-1\right) \\ &=-2(2 \sin t-1)(\sin t+1) \end{aligned} $$ Since $f^{\prime}(t)$ exists for all $t$, the only critical numbers of $f$ occur when $f^{\prime}(t)=0,$ that is, $$ \begin{aligned} f^{\prime}(t) &=-2(2 \sin t-1)(\sin t+1)=0 \end{aligned} $$ $ \Rightarrow $ $$ \sin t= \frac{1}{2} \quad\text {or } \quad \sin t=-1 $$ $ \Rightarrow $ $$ t=\frac{\pi}{6}. $$ Notice that this critical number in the interval $[0, \frac{\pi}{2}], $ The values of $f $ at these critical numbers are $$ f\left(\frac{\pi}{6}\right)=\sqrt{3}+\frac{1}{2}\sqrt{3}=\frac{3}{2}\sqrt{3} \approx 2.60, $$ The values of $f$ at the endpoints of the interval are $$ f(0)=2 ,\quad f(\frac{\pi}{2})=0. $$ Comparing these four numbers, we see that the absolute maximum value is $$ f\left(\frac{\pi}{6}\right)=\frac{3}{2}\sqrt{3} \approx 2.60, $$ and the absolute minimum value is $$ f(\frac{\pi}{2})=0. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.