Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.6 Implicit Differentiation - 2.6 Exercises - Page 166: 25

Answer

The equation of the tangent line to the curve at the given point $(\pi/2, \pi/4)$ is, $y = \frac{1}{2}x$

Work Step by Step

Given that, $ysin2x = xcos2y$, $(\pi/2, \pi/4)$ After differentiating both side we get, ⇒ $y.cos2x.2+sin2x.y' = x.(-sin2y).2y'+cos2y.1$ ⇒ $2ycos2x+y'sin2x = -2xy'sin2y+cos2y$ ⇒ $y'sin2x+2xy'sin2y= cos2y-2ycos2x$ ⇒ $y'(sin2x+2xsin2y)= cos2y-2ycos2x$ ⇒ $y'= \frac{cos2y-2ycos2x}{sin2x+2xsin2y}$ At the given point $(\pi/2, \pi/4)$ , $y' = \frac{cos(2.\frac{\pi}{4})-2.\frac{\pi}{4}cos(2.\frac{\pi}{2})}{sin(2.\frac{\pi}{2})+2.\frac{\pi}{2}sin(2.\frac{\pi}{4})}$ ⇒ $y' = \frac{cos\frac{\pi}{2}-\frac{\pi}{2}cos\pi}{sin\pi+ \pi sin\frac{\pi}{2}}$ ⇒ $y' = \frac{0 -\frac{\pi}{2}.(-1)}{0 + \pi.1}$ ⇒ $y' = \frac{\frac{\pi}{2}}{ \pi}$ ⇒ $y' = \frac{1}{2}$ So, an equation of the tangent line to the curve at the given point $(\pi/2, \pi/4)$ is, $y-\frac{\pi}{4} = \frac{1}{2}(x-\frac{\pi}{2})$ ⇒ $y = \frac{1}{2}x - \frac{\pi}{4} + \frac{\pi}{4}$ ⇒ $y = \frac{1}{2}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.