Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.4 Derivatives of Trigonometric Functions - 2.4 Exercises - Page 152: 56

Answer

The value of the limit is $0$.

Work Step by Step

The area of the semicircle with radius $r=\frac{PQ}{2}$ is: $$A(\theta)=\frac{\pi \cdot r^{2}}{2}=\frac{\pi \cdot PQ^{2}}{8}$$ Using the law of cosines in the triangle it follows: $$PQ^{2}=10^{2}+10^{2}-2\cdot 10 \cdot 10 \cdot \cos(\theta)$$ $$PQ^{2}=100+100-2\cdot 100 \cdot \cos(\theta)$$ $$PQ^{2}=200-200 \cdot \cos(\theta)$$ $$PQ^{2}=200(1-\cos(\theta))$$ So: $$A(\theta)=\frac{\pi \cdot PQ^{2}}{8}=\frac{200\pi (1-\cos(\theta))}{8}$$ The area of the triangle is: $$B(\theta)=\frac{1}{2} \cdot 10 \cdot 10 \cdot \sin(\theta)=50\sin(\theta)$$ So the limit is: $$\lim\limits_{\theta \to 0^{+}}\frac{\frac{200\pi (1-\cos(\theta))}{8}}{50\sin(\theta)}$$ $$\lim\limits_{\theta \to 0^{+}}\frac{200\pi (1-\cos(\theta))}{400\sin(\theta)}$$ $$\lim\limits_{\theta \to 0^{+}}\frac{\pi (1-\cos(\theta))}{2\sin(\theta)}$$ The limit has an indeterminate form type $\frac{0}{0}$. $$\lim\limits_{\theta \to 0^{+}}\frac{\pi (1-\cos(\theta))\theta}{2\theta\sin(\theta)}$$ $$\lim\limits_{\theta \to 0^{+}}\frac{\pi}{2} \cdot \frac{1-\cos(\theta)}{\theta}\cdot \frac{\theta}{\sin(\theta)}$$ $$\frac{\pi}{2} \cdot \lim\limits_{\theta \to 0^{+}}\frac{1-\cos(\theta)}{\theta}\cdot \lim\limits_{\theta \to 0^{+}}\frac{\theta}{\sin(\theta)}$$ We know that those limits are usual: $$\lim\limits_{\theta \to 0^{+}}\frac{1-\cos(\theta)}{\theta}=0~~\text{and}~~\lim\limits_{\theta \to 0^{+}}\frac{\theta}{\sin(\theta)}=1$$ So: $$\frac{\pi}{2} \cdot 0\cdot 1=0$$ The value of the limit is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.