Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.4 Derivatives of Trigonometric Functions - 2.4 Exercises - Page 151: 32

Answer

\[(a)\;g'(\frac{π}{3} )=2-\sqrt 3\] \[(b)\;h'(\frac{π}{3})=\frac{1-2\sqrt 3}{16}\]

Work Step by Step

Given that :- \[f\left(\frac{π}{3}\right)=4\;,\;f'\left(\frac{π}{3}\right)=-2\] $ (a)\; g(x)=f(x)\;\sin x$ Differentiate with respect to $x$ using product rule \[g'(x)=f'(x)\sin x+f(x)\cos x\] \[g'(\frac{π}{3} )=f'(\frac{π}{3} )\sin (\frac{π}{3}) +f(\frac{π}{3} )\cos ( \frac{π}{3})\] \[g'(\frac{π}{3} )=-2\left(\frac{\sqrt{3}}{2}\right)+(4)\left(\frac{1}{2}\right)\] \[g'(\frac{π}{3} )=-\sqrt 3+2=2-\sqrt 3\] Hence \[g'(\frac{π}{3} )=2-\sqrt 3\] $(b) \; h(x)=\large\frac{\cos x}{f(x)}$ Differentiate with respect to $x$ \[h'(x)=\frac{-\sin x\cdot \:f(x)-\cos x\: \cdot f'(x)}{(f(x))^2}\] Using given data \[h'(\frac{π}{3})=\frac{\frac{-\sqrt 3}{2}\times 4-\frac{1}{2}\times (-2)}{(4)^2}\] \[h'(\frac{π}{3})=\frac{-2\sqrt 3+1}{16}\] \[h'(\frac{π}{3})=\frac{1-2\sqrt 3}{16}\] Hence \[h'(\frac{π}{3})=\frac{1-2\sqrt 3}{16}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.