Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 2 - Derivatives - 2.3 Differentiation Formulas - 2.3 Exercises - Page 142: 70

Answer

(a) $-6\;\;,$ (b) 24 $\;\;$ (c) 4$\;\;,$ (d) $\frac{-36}{49}$

Work Step by Step

Given that $f(4)=2\,,\,g(4)=5\:,\,f'(4)=6\,,\,g'(4)=-3$ (a) $h(x)=3f(x)+8g(x)$ Differentiating with respect to $x$ $\Rightarrow h'(x)=3f'(x)+8g'(x)$ $\Rightarrow h'(4)=3f'(4)+8g'(4)$ Using given that $\Rightarrow h'(4)=3(6)+8(-3)$ $\Rightarrow h'(4)=18-24=-6$ (b) $h(x)=f(x)g(x)$ Differentiating with respect to $x$ using product rule $\Rightarrow h'(x)=f'(x)g(x)+f(x)g'(x)$ $\Rightarrow h'(4)=f'(4)g(4)+f(4)g'(4)$ Using given that $\Rightarrow h'(4)=(6)(5)+(2)(-3)$ $\Rightarrow h'(4)=30-6=24$ (c) $\;h(x)=\frac{f(x)}{g(x)}$ Differentiating with respect to $x$ by quotient rule $\Rightarrow h'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}$ $\Rightarrow h'(4)=\frac{f'(4)g(4)-f(4)g'(4)}{[g(4)]^2}$ $\Rightarrow h'(4)=\frac{(6)(5)-(2)(-3)}{(-3)^2}$ $\Rightarrow h'(4)=\frac{30+6}{9}=\frac{36}{9}=4$ (d) $h(x)=\frac{g(x)}{f(x)+g(x)}$ Differentiating with respect to $x$ using quotient rule $\Rightarrow h'(x)=\frac{g'(x)[f(x)+g(x)]-g(x)[f(x)+g(x)]'}{[f(x)+g(x)]^2}$ $\Rightarrow h'(x)=\frac{g'(x)[f(x)+g(x)]-g(x)[f'(x)+g'(x)]}{[f(x)+g(x)]^2}$ $\Rightarrow h'(x)=\frac{g'(x)f(x)+g'(x)g(x)-g(x)f'(x)-g(x)g'(x)}{[f(x)+g(x)]^2}$ $\Rightarrow h'(x)=\frac{g'(x)f(x)-g(x)f'(x)}{[f(x)+g(x)]^2}$ $\Rightarrow h'(4)=\frac{g'(4)f(4)-g(4)f'(4)}{[f(4)+g(4)]^2}$ Using given data $\Rightarrow h'(4)=\frac{(-3)(2)-(5)(6)}{(2+5)^2}$ $\Rightarrow h'(4)=\frac{-6-30}{49}=\frac{-36}{49}$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.