Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.4 Tangent Planes and Linear Approximations - 14.4 Exercises - Page 975: 29

Answer

$dR=\beta^2 \cos \gamma d\alpha+2\alpha \cos \gamma \beta d \beta-\alpha \beta^2 \sin \gamma d \gamma$

Work Step by Step

Write the differential form can be evaluated as follows: $dR=\dfrac{\partial R}{\partial \alpha} d\alpha +\dfrac{\partial R}{\partial \beta} d\beta+\dfrac{\partial R}{\partial \gamma} d\gamma$ We are given that $R=\alpha \beta^2 \cos \gamma$ $dR=\dfrac{\partial R}{\partial \alpha} d\alpha +\dfrac{\partial R}{\partial \beta} d\beta+\dfrac{\partial R}{\partial \gamma} d\gamma\\\\=\beta^2 \cos \gamma d\alpha+2\alpha \cos \gamma \beta d \beta+(-\alpha) \beta^2 \sin \gamma d \gamma\\\\=\beta^2 \cos \gamma d\alpha+2\alpha \cos \gamma \beta d \beta-\alpha \beta^2 \sin \gamma d \gamma$ Hence, $dR=\beta^2 \cos \gamma d\alpha+2\alpha \cos \gamma \beta d \beta-\alpha \beta^2 \sin \gamma d \gamma$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.