Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.4 Tangent Planes and Linear Approximations - 14.4 Exercises - Page 975: 21

Answer

$L(x,y,z)=\frac{3}{7}x+\frac{2}{7}y+\frac{6}{7}z$. The function evaluated at the point $(3.02,1.97,5.99)$: $L(3.02,1.97,5.99)=6.9914$

Work Step by Step

The linear approximation to a three-variable function at a point $(x_0,y_0,z_0)$ is given by the formula: $L(x,y,z)=f_x(x-x_0)+f_y(y-y_0)+f_z(z-z_0)+w_0$ where $w_0$ is the output of the function evaluated at the given point. The fucntion $f(x,y,z)=\sqrt{x^2+y^2+z^2}$ is provided and the linear approximation must be found to at the point $(3,2,6)$. Finding the partial derivatives w.r.t $x$, $y$, and $z$: $f_x=\frac{1}{2}(x^2+y^2+z^2)^{-\frac{1}{2}} \cdot 2x=\frac{x}{\sqrt{x^2+y^2+z^2}}$ Because of the symmetry of the function, all the derivatives will assume the same general form: $f_y=\frac{1}{2}(x^2+y^2+z^2)^{-\frac{1}{2}} \cdot 2y=\frac{y}{\sqrt{x^2+y^2+z^2}}$ $f_x=\frac{1}{2}(x^2+y^2+z^2)^{-\frac{1}{2}} \cdot 2z=\frac{z}{\sqrt{x^2+y^2+z^2}}$ We find the value of the function and its partial derivatives at the point $(3,2,6)$: $w_0=f(3,2,6)=\sqrt{3^2+2^2+6^2}=7$ $f_x(3,2,6)=\frac{3}{7}$ $f_y(3,2,6)=\frac{2}{7}$ $f_z(3,2,6)=\frac{6}{7}$ Combining all the results above, the linear approximation to $f$ is as follows: $L(x,y,z)=\frac{3}{7}(x-3)+\frac{2}{7}(y-2)+\frac{6}{7}(z-6)+7=\frac{3}{7}x+\frac{2}{7}y+\frac{6}{7}z$. Using the linear approximation, the function can be evaluated at the point $(3.02,1.97,5.99)$: $L(3.02,1.97,5.99)=\frac{3}{7}(3.02)+\frac{2}{7}(1.97)+\frac{6}{7}(5.99)=6.9914$ The actual value of the function at that point is $6.9915$. Thus, the linear approximation proves to be useful in simplifying computations.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.