Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.3 The Integral Test and Estimates of Sums - 11.3 Exercises - Page 766: 23

Answer

$\displaystyle\sum_{k=1}^{\infty}ke^{-k}$ is convergent.

Work Step by Step

\[\sum_{k=1}^{\infty}ke^{-k}=\sum_{n=1}^{\infty}ne^{-n}\] Let \[\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}ne^{-n}\] \[\Rightarrow a_n=ne^{-n}\] So $a_n$ is positive term and montonically decreasing. So Integral test is applicable. Let \[I=\int_{1}^{\infty}xe^{-x}dx\] \[I=\lim_{t\rightarrow \infty}\int_{1}^{t}xe^{-x}dx\;\;\;\;\;\;\ldots (1)\] Let \[I_1=\int xe^{-x}dx\] Using integration by parts: \[I_1=-xe^{-x}+\int e^{-x}dx\] \[I_1=-xe^{-x}-e^{-x}=-e^{-x}(x+1)=\frac{-(x+1)}{e^x}\] \[I_1=\frac{-(x+1)}{e^x}\;\;\;\;\;\;\;\;\;\ldots (2)\] Using (2) in (1) \[I=\lim_{t\rightarrow \infty}\left[\frac{-(x+1)}{e^x}\right]_{1}^{t}\] \[\Rightarrow I=\lim_{t\rightarrow \infty}\left[-\frac{(t+1)}{e^t}+\frac{2}{e}\right]\] \[\Rightarrow I=-\lim_{t\rightarrow \infty}\left[\frac{(t+1)}{e^t}\right]+\frac{2}{e}\] Which is $\displaystyle\frac{\infty}{\infty}$ case, using L' Hopitals rule \[\Rightarrow I=-\lim_{t\rightarrow \infty}\left[\frac{1}{e^t}\right]+\frac{2}{e}\] \[\Rightarrow I=0+\frac{2}{e}=\frac{2}{e}\] Which is finite so $I$ is convergent. So by Integral test, $\displaystyle\sum_{k=1}^{\infty}ke^{-k}$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.