Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.3 The Integral Test and Estimates of Sums - 11.3 Exercises - Page 766: 19

Answer

$\displaystyle\sum_{n=1}^{\infty}\frac{n^3}{n^4+4}$ is divergent

Work Step by Step

Let \[\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\frac{n^3}{n^4+4}\] \[\Rightarrow a_n=\frac{n^3}{n^4+4}=\frac{1}{n+\frac{4}{n^3}}\] $a_n$ is positive term and monotonically decreasing. So Integral test is applicable. Let \[I=\int_{1}^{\infty}\frac{x^3}{x^4+4}dx\] \[I=\lim_{t\rightarrow\infty}\int_{1}^{t}\frac{x^3}{x^4+4}dx\;\;\;\;\;\;\;\;\;\;\ldots(1)\] Let \[I_1=\int\frac{x^3}{x^4+4}dx\] Substitute $y=x^4+4\;\Rightarrow\; dy=4x^3dx$ \[\frac{1}{4}dy=x^3dx\] \[\Rightarrow I_1=\frac{1}{4}\int\frac{dy}{y}\] \[\Rightarrow I_1=\frac{1}{4}\ln |y|\] \[\Rightarrow I_1=\frac{1}{4}\ln (x^4+4)\;\;\;\;\;\;\;\;\;\;\ldots (2)\] Using (2) in (1) \[I=\lim_{t\rightarrow\infty}\left[\frac{1}{4}\ln (x^4+4)\right]_{1}^{t}\] \[\Rightarrow I=\lim_{t\rightarrow\infty}\left[\frac{1}{4}\ln (t^4+4)-\frac{1}{2}\ln 5\right]\] \[\Rightarrow I=\infty\] $\Rightarrow I$ is divergent. By integral test, $\displaystyle\sum_{n=1}^{\infty}\frac{n^3}{n^4+4}$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.