Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.3 The Integral Test and Estimates of Sums - 11.3 Exercises - Page 766: 16

Answer

$\displaystyle\sum_{n=1}^{\infty}\frac{\sqrt{n}}{1+n^{\frac{3}{2}}}$ is divergent

Work Step by Step

Let \[\sum_{n=1}^{\infty}a_n=\sum_{n=1}^{\infty}\frac{\sqrt{n}}{1+n^{\frac{3}{2}}}\] \[\Rightarrow a_n=\frac{\sqrt{n}}{1+n^{\frac{3}{2}}}\] $a_n$ is positive term and monotonically decreasing. So Integral test is applicable. Let \[I=\int_{1}^{\infty}\frac{\sqrt{x}}{1+x^{\frac{3}{2}}}dx\] \[I=\lim_{t\rightarrow\infty}\int_{1}^{t}\frac{\sqrt{x}}{1+x^{\frac{3}{2}}}dx\;\;\;\;\;\;\;\;\;\;\ldots(1)\] Let \[I_1=\int\frac{\sqrt{x}}{1+x^{\frac{3}{2}}}dx\] Substitute $y=1+\displaystyle x^{\frac{3}{2}}\;\Rightarrow\; dy=\displaystyle\frac{3}{2}\sqrt{x}\;dx\;\Rightarrow \frac{2}{3}dy=\sqrt{x}dx$ \[\Rightarrow I_1=\frac{2}{3}\int\frac{dy}{y}\] \[\Rightarrow I_1=\frac{2}{3}\ln |y|\] \[\Rightarrow I_1=\frac{2}{3}\ln |1+\displaystyle x^{\frac{3}{2}}|\;\;\;\;\;\;\;\;\;\;\ldots (2)\] Using (2) in (1) \[I=\lim_{t\rightarrow\infty}\left[\frac{2}{3}\ln |1+\displaystyle x^{\frac{3}{2}}|\right]_{1}^{t}\] \[\Rightarrow I=\lim_{t\rightarrow\infty}\left[\frac{2}{3}\ln |1+\displaystyle t^{\frac{3}{2}}|-\frac{2}{3}\ln 2\right]\] $\Rightarrow I$ is divergent. By integral test, $\displaystyle\sum_{n=1}^{\infty}\frac{\sqrt{n}}{1+n^{\frac{3}{2}}}$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.