Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.3 The Integral Test and Estimates of Sums - 11.3 Exercises - Page 765: 6

Answer

$\displaystyle\sum_{n=1}^{\infty}\frac{1}{(3n-1)^4}$ is convergent.

Work Step by Step

Let \[\sum_{n=1}^{\infty}\frac{1}{(3n-1)^4}=\sum_{n=1}^{\infty}a_n\] \[\Rightarrow a_n=\frac{1}{(3n-1)^4}\] $a_n$ is positive term and montonically decreasing. So integral test is applicable. Consider \[I=\int_{1}^{\infty}\frac{1}{(3x-1)^4}\;dx\] \[I=\lim_{t\rightarrow\infty}\int_{1}^{t}\frac{1}{(3x-1)^4}\;dx\;\;\;\;\;\;\;\;\;\ldots (1)\] Let \[I_1=\int\frac{1}{(3x-1)^4}dx\] Substitute \[y=3x-1 \;\;\Rightarrow \;\; dy=3dx\;\Rightarrow dx=\frac{1}{3}dy\] \[I_1=\frac{1}{3}\int\frac{1}{y^4}dy\] \[I_1=\frac{1}{3}\int y^{-4}dy\] \[I_1=\frac{1}{3}\left[\frac{y^{-3}}{-3}\right]\] \[I_1=\left[\frac{-1}{9y^3}\right]\] \[\Rightarrow I_1=\frac{-1}{9(3x-1)^3}\;\;\;\;\;\;\;\;\;\;\;\ldots (2)\] Using (2) in (1) \[\Rightarrow I=\lim_{t\rightarrow\infty}\left[\frac{-1}{9(3x-1)^3}\right]_{1}^{t}\] \[\Rightarrow I=\lim_{t\rightarrow\infty}\left[\frac{-1}{9(3t-1)^3}+\frac{1}{72}\right]\] \[ \Rightarrow I=0+\frac{1}{72}\] \[ \Rightarrow I=\frac{1}{72}\] Which is finite so $I$ is convergent. By integral test $\displaystyle\sum_{n=1}^{\infty}\frac{1}{(3n-1)^4}$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.