Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.8 Continuity - 1.8 Exercises - Page 94: 72

Answer

(c)Converse need not be true. \[f(x)=\left\{\begin{array}{cc}1\;\;\;\;,x\geq 0\\ -1\;\;\;\;,x<0\end{array}\right.\]

Work Step by Step

(a) \[F(x)=|x|\] \[|x|=\left\{\begin{array}{cc}x\;\;\;\;,x\geq 0\\ -x\;\;\;\;\;,x< 0\end{array}\right.\] Clearly $|x|$ is continuous if $x\neq 0$ so we will check the continuity at $x=0$. \[\lim_{x\rightarrow 0^{-}}|x|=\lim_{x\rightarrow 0}(-x)=0\] \[\lim_{x\rightarrow 0^{+}}|x|=\lim_{x\rightarrow 0^{+}(x)=0}\] \[\lim_{x\rightarrow 0^{-}}=\lim_{x\rightarrow 0^{+}}=|0|\] $\Rightarrow |x|$ is continuous at $x=0$ Therefore $|x|$ is always continuous. (b) Let $f(x)$ is continuous on the interval $[a,b]$ Let $c\in [a,b]$ $\Rightarrow f$ is continuous at $c$. \[\lim_{x\rightarrow c^{-}}|f(x)|=|\lim_{x\rightarrow c}f(x)|=f(c)\] $\Rightarrow |f|$ is continuous at $c$ Since $c$ is arbitrary therefore $|f|$ is continuous on $[a,b]$ (c) Converse need not be true. Let \[f(x)=\left\{\begin{array}{cc}1\;\;\;\;\;\;\,x>0\\ -1\;\;\;\;\;\;\;\;\;, x\leq 0\end{array}\right.\] \[|f(x)|=1\;\;\;\;\;,x\in (-\infty,\infty)\] Clearly $|f(x)|$ is continuous at $x=0$ but $f$ is not continuous at $x=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.