Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Appendix D - Trigonometry - D Exercises: 27

Answer

$sin\frac{5\pi}{6}=\frac{1}{2}$ $cos\frac{5\pi}{6}=-\frac{\sqrt 3}{2}$ $tan\frac{5\pi}{6}=-\frac{\sqrt 3}{3}$ $csc\frac{5\pi}{6}=2$ $sec\frac{5\pi}{6}=-\frac{2\sqrt 3}{ 3}$ $cot\frac{5\pi}{6}=-\sqrt 3$

Work Step by Step

Since, $\frac{5\pi}{6}$ lies on second quadrant, thus its reference angle will be $\pi-\frac{5\pi}{6}=\frac{\pi}{6}$, which can be considered as common angle to all trigonometric ratios. The trigonometric ratios and their inverse trigonometric ratios are given as follows: $sin\frac{5\pi}{6}=sin\frac{\pi}{6}=\frac{1}{2}$ $cos\frac{5\pi}{6}=-cos\frac{\pi}{6}=-\frac{\sqrt 3}{2}$ $tan\frac{5\pi}{6}=-tan\frac{\pi}{6}=-\frac{\sqrt 3}{3}$ $csc\frac{5\pi}{6}=\frac{1}{sin\frac{5\pi}{6}}=2$ $sec\frac{5\pi}{6}=\frac{1}{cos\frac{5\pi}{6}}=-\frac{2\sqrt 3}{ 3}$ $cot\frac{5\pi}{6}=\frac{1}{tan\frac{5\pi}{6}}=-\sqrt 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.