Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 42

Answer

$$ - \frac{1}{2}\pi $$

Work Step by Step

$$\eqalign{ & \int_0^\pi {x\sin 2x} dx \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = x,{\text{ }}du = dx \cr & dv = \sin 2xdx,{\text{ }}v = - \frac{1}{2}\cos 2x \cr & {\text{Integration by parts formula }} \cr & \int {\underbrace x_u} \underbrace {\sin 2xdx}_{dv} = \underbrace {\left( x \right)}_u\underbrace {\left( { - \frac{1}{2}\cos 2x} \right)}_v - \int {\underbrace {\left( { - \frac{1}{2}\cos 2x} \right)}_v} \underbrace {dx}_{du} \cr & {\text{Multiply}} \cr & \int {x\sin 2x} dx = - \frac{1}{2}x\cos 2x + \frac{1}{2}\int {\cos 2x} dx \cr & \int {x\sin 2x} dx = - \frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x + C \cr & {\text{Therefore,}} \cr & \int_0^\pi {x\sin 2x} dx = \left[ { - \frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x} \right]_0^\pi \cr & = \left[ { - \frac{1}{2}\left( \pi \right)\cos 2\left( \pi \right) + \frac{1}{4}\sin 2\left( \pi \right)} \right] - \left[ { - 0 + \frac{1}{4}\sin 0} \right] \cr & {\text{Simplify}} \cr & = \left( { - \frac{1}{2}\pi + 0} \right) - \left( 0 \right) \cr & = - \frac{1}{2}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.