Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.2 Exercises - Page 521: 39

Answer

$$\int_{0}^{3} x e^{x / 2} d x =2e^{3/2}+4$$

Work Step by Step

Since $$ \int_{0}^{3} x e^{x / 2} d x $$ Integrate by parts , let \begin{align*} u&=x\ \ \ \ \ \ \ dv= e^{x / 2} d x\\ du&=dx\ \ \ \ \ \ v=2 e^{x / 2} \end{align*} Then \begin{align*} \int_{0}^{3} x e^{x / 2} d x&=uv-\int vdu\\ &=2x e^{x / 2}\bigg|_{0}^{3} -\int_{0}^{3}2 e^{x / 2} dx\\ &=2x e^{x / 2}\bigg|_{0}^{3} -4e^{x / 2}\bigg|_{0}^{3} \\ &=2e^{3/2}+4 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.