Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.5 Exercises: 1


$f(x)$ is graph f

Work Step by Step

$f(x) = \frac{2x^2}{x^2+2} = \frac{2x^2 + 4 - 4}{x^2+2} = 2 - \frac{4}{x^2+2}$. $\frac{4}{x^2 + 2}$ never equals $0$ so $f(x)$ has a horizontal asymptote at $y = 2$. At $x=0$, $y = 0$ so that eliminates the options to c and f. At $x = -2$, $y$ is positive so this eliminates the options down to f.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.