Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 15 - Vector Analysis - 15.1 Exercises - Page 1049: 20

Answer

${\mathbf{F}(x, y)=\frac{x}{\sqrt{x^2+4y^2+z^2}} \mathbf{i}+\frac{4y}{\sqrt{x^2+4y^2+z^2}}\mathbf{j}+\frac{z}{\sqrt{x^2+4y^2+z^2}} \mathbf{k}}$

Work Step by Step

Given $$f(x, y,z)=\sqrt{x^2+4y^2+z^2}=(x^2+4y^2+z^2)^\frac{1}{2}$$ Since \begin{align}\mathbf{F}(x,y)&=M \mathbf{i}+N\mathbf{j}+P\mathbf{k}\\ &=f_{x}(x, y)\mathbf{i}+f_{y}(x, y)\mathbf{j}+f_{z}(x, y)\mathbf{k} \end{align} As, we have \begin{array}{l} {f_{x}(x, y)=\frac{\partial f(x,y)}{\partial x}=\frac{1}{2}(2x)(x^2+4y^2+z^2)^{-\frac{1}{2}}=\frac{x}{\sqrt{x^2+4y^2+z^2}}} \\ {f_{y}(x, y)=\frac{\partial f(x,y)}{\partial y}=\frac{1}{2}(8y)(x^2+4y^2+z^2)^{-\frac{1}{2}}=\frac{4 y}{\sqrt{x^2+4y^2+z^2}}} \\ {f_{z}(x, y)=\frac{\partial f(x,y)}{\partial z}=\frac{1}{2}(2z)(x^2+4y^2+z^2)^{-\frac{1}{2}}=\frac{z}{\sqrt{x^2+4y^2+z^2}}} \\ \end{array} So, we get $${\mathbf{F}(x, y)=\frac{x}{\sqrt{x^2+4y^2+z^2}} \mathbf{i}+\frac{4y}{\sqrt{x^2+4y^2+z^2}}\mathbf{j}+\frac{z}{\sqrt{x^2+4y^2+z^2}} \mathbf{k}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.