Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - 1.1 Exercises: 10

Answer

(a) $4\sqrt 2$ (b) $\frac{3\sqrt 17+6\sqrt 29+2\sqrt 61+13}{12}$ (c) By creating smaller intervals, the approximation line gets closer to the curve, so the length of the approximation lines better estimate the length of the curve.

Work Step by Step

(a) Use the distance formula. $$\sqrt {(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}$$ $$\sqrt {(5-1)^2+(1-5)^2}$$ $$\sqrt {(4)^2+(-4)^2}$$ $$\sqrt {16+16}$$ $$\sqrt {32}$$ $$4\sqrt {2}$$ (b) Use the distance formula for each interval. $$\sqrt {(2-1)^2+(\frac{5}{2}-5)^2}$$ $$\frac{\sqrt {29}}{2}$$ $$\sqrt {(3-2)^2+(\frac{5}{3}-\frac{5}{2})^2}$$ $$\frac{\sqrt {61}}{6}$$ $$\sqrt {(4-3)^2+(\frac{5}{4}-\frac{5}{3})^2}$$ $$\frac{13}{12}$$ $$\sqrt {(5-4)^2+(1-\frac{5}{4})^2}$$ $$\frac{\sqrt {17}}{4}$$ Add them together to get: $$\frac{3\sqrt 17+6\sqrt 29+2\sqrt 61+13}{12}$$ (c) By creating smaller intervals, the approximation line gets closer to the curve, so the length of the approximation lines better estimate the length of the curve.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.