Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.4 Convergence Tests - Exercises Set 9.4 - Page 629: 6

Answer

(a) $\mathop {\lim }\limits_{k \to \infty } \dfrac{k}{{{{\rm{e}}^k}}} = 0$; the series may either converge or diverge. (b) $\mathop {\lim }\limits_{k \to \infty } \ln k = \infty $; the series diverges. (c) $\mathop {\lim }\limits_{k \to \infty } \dfrac{1}{{\sqrt k }} = 0$; the series may either converge or diverge. (d) $\mathop {\lim }\limits_{k \to \infty } \dfrac{{\sqrt k }}{{\sqrt k + 3}} \ne 0$; the series diverges.

Work Step by Step

(a) Let ${a_k} = \dfrac{k}{{{{\rm{e}}^k}}}$. $\mathop {\lim }\limits_{k \to \infty } {a_k} = \mathop {\lim }\limits_{k \to \infty } \dfrac{k}{{{{\rm{e}}^k}}} = 0$ According to the divergence test, the series may either converge or diverge. (b) Let ${a_k} = \ln k$. $\mathop {\lim }\limits_{k \to \infty } {a_k} = \mathop {\lim }\limits_{k \to \infty } \ln k = \infty $ The limit does not exist. Since $\mathop {\lim }\limits_{k \to \infty } {a_k} \ne 0$, by the divergence test, the series diverges. (c) Let ${a_k} = \dfrac{1}{{\sqrt k }}$. $\mathop {\lim }\limits_{k \to \infty } {a_k} = \mathop {\lim }\limits_{k \to \infty } \dfrac{1}{{\sqrt k }} = 0$ According to the divergence test, the series may either converge or diverge. (d) Let ${a_k} = \dfrac{{\sqrt k }}{{\sqrt k + 3}}$. $\mathop {\lim }\limits_{k \to \infty } {a_k} = \mathop {\lim }\limits_{k \to \infty } \dfrac{{\sqrt k }}{{\sqrt k + 3}} = \mathop {\lim }\limits_{k \to \infty } \dfrac{1}{{1 + \dfrac{3}{{\sqrt k }}}} = 1$ Since $\mathop {\lim }\limits_{k \to \infty } {a_k} \ne 0$, by the divergence test, the series diverges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.