Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 9 - Infinite Series - 9.4 Convergence Tests - Exercises Set 9.4 - Page 629: 2

Answer

(a) $\mathop \sum \limits_{k = 2}^\infty \left[ {\dfrac{1}{{{k^2} - 1}} - \dfrac{7}{{{{10}^{k - 1}}}}} \right] = - \dfrac{1}{{36}}$ (b) $\mathop \sum \limits_{k = 1}^\infty \left[ {{7^{ - k}}\cdot{3^{k + 1}} - \dfrac{{{2^{k + 1}}}}{{{5^k}}}} \right] = \dfrac{{11}}{{12}}$

Work Step by Step

(a) (i) Consider the series $\mathop \sum \limits_{k = 2}^\infty \dfrac{1}{{{k^2} - 1}}$. We can write $\dfrac{1}{{{k^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{1}{{k - 1}} - \dfrac{1}{{k + 1}}} \right)$. Thus, we have the $n$th partial sums: ${s_n} = \mathop \sum \limits_{k = 2}^n \dfrac{1}{{{k^2} - 1}} = \dfrac{1}{2}\mathop \sum \limits_{k = 2}^n \left( {\dfrac{1}{{k - 1}} - \dfrac{1}{{k + 1}}} \right)$ ${s_n} = \dfrac{1}{2}\left[ {\left( {1 - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{4}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{5}} \right) + \cdot\cdot\cdot + \left( {\dfrac{1}{{n - 1}} - \dfrac{1}{{n + 1}}} \right)} \right]$ ${s_n} = \dfrac{1}{2}\left[ {1 + \dfrac{1}{2} + \left( { - \dfrac{1}{3} + \dfrac{1}{3}} \right) + \left( { - \dfrac{1}{4} + \dfrac{1}{4}} \right) + \cdot\cdot\cdot + \left( { - \dfrac{1}{{n - 1}} + \dfrac{1}{{n - 1}}} \right) - \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right]$ ${s_n} = \mathop \sum \limits_{k = 2}^n \dfrac{1}{{{k^2} - 1}} = \dfrac{1}{2}\left( {\dfrac{3}{2} - \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)$ The sum of the series is $\mathop \sum \limits_{k = 2}^\infty \dfrac{1}{{{k^2} - 1}} = \mathop {\lim }\limits_{n \to \infty } {s_n} = \mathop {\lim }\limits_{n \to \infty } \left( {\dfrac{3}{4} - \dfrac{1}{{2n}} - \dfrac{1}{{2\left( {n + 1} \right)}}} \right)$ $\mathop \sum \limits_{k = 2}^\infty \dfrac{1}{{{k^2} - 1}} = \dfrac{3}{4}$ (ii) Consider the geometric series $\mathop \sum \limits_{k = 2}^\infty \dfrac{7}{{{{10}^{k - 1}}}}$. Write $\mathop \sum \limits_{k = 2}^\infty \dfrac{7}{{{{10}^{k - 1}}}} = \mathop \sum \limits_{k = 2}^\infty 70{\left( {\dfrac{1}{{10}}} \right)^k} = \mathop \sum \limits_{k = 0}^\infty 70{\left( {\dfrac{1}{{10}}} \right)^{k + 2}} = \mathop \sum \limits_{k = 0}^\infty \dfrac{7}{{10}}{\left( {\dfrac{1}{{10}}} \right)^k}$ By Theorem 9.3.3, the geometric series has the sum $\mathop \sum \limits_{k = 2}^\infty \dfrac{7}{{{{10}^{k - 1}}}} = \dfrac{{\dfrac{7}{{10}}}}{{1 - \dfrac{1}{{10}}}} = \dfrac{7}{9}$ Therefore, by Theorem 9.4.3: $\mathop \sum \limits_{k = 2}^\infty \left[ {\dfrac{1}{{{k^2} - 1}} - \dfrac{7}{{{{10}^{k - 1}}}}} \right] = \mathop \sum \limits_{k = 2}^\infty \dfrac{1}{{{k^2} - 1}} - \mathop \sum \limits_{k = 2}^\infty \dfrac{7}{{{{10}^{k - 1}}}} = \dfrac{3}{4} - \dfrac{7}{9} = - \dfrac{1}{{36}}$ (b) By Theorem 9.4.3, write $\mathop \sum \limits_{k = 1}^\infty \left[ {{7^{ - k}}\cdot{3^{k + 1}} - \dfrac{{{2^{k + 1}}}}{{{5^k}}}} \right] = \mathop \sum \limits_{k = 1}^\infty {7^{ - k}}\cdot{3^{k + 1}} - \mathop \sum \limits_{k = 1}^\infty \dfrac{{{2^{k + 1}}}}{{{5^k}}}$ $ = \mathop \sum \limits_{k = 1}^\infty 3{\left( {\dfrac{3}{7}} \right)^k} - \mathop \sum \limits_{k = 1}^\infty 2{\left( {\dfrac{2}{5}} \right)^k}$ $ = \mathop \sum \limits_{k = 0}^\infty 3{\left( {\dfrac{3}{7}} \right)^{k + 1}} - \mathop \sum \limits_{k = 0}^\infty 2{\left( {\dfrac{2}{5}} \right)^{k + 1}}$ $ = \mathop \sum \limits_{k = 0}^\infty \dfrac{9}{7}{\left( {\dfrac{3}{7}} \right)^k} - \mathop \sum \limits_{k = 0}^\infty \dfrac{4}{5}{\left( {\dfrac{2}{5}} \right)^k}$ By Theorem 9.3.3: $\mathop \sum \limits_{k = 1}^\infty \left[ {{7^{ - k}}\cdot{3^{k + 1}} - \dfrac{{{2^{k + 1}}}}{{{5^k}}}} \right] = \dfrac{{\dfrac{9}{7}}}{{1 - \dfrac{3}{7}}} - \dfrac{{\dfrac{4}{5}}}{{1 - \dfrac{2}{5}}} = \dfrac{9}{4} - \dfrac{4}{3} = \dfrac{{11}}{{12}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.