Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.3 Integration By Substitution - Exercises Set 4.3 - Page 286: 33

Answer

$$ \frac{{{{\left( {2y + 1} \right)}^{3/2}}}}{6} - \frac{{{{\left( {2y + 1} \right)}^{1/2}}}}{2} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{y}{{\sqrt {2y + 1} }}} dy \cr & {\text{substitute }}u = 2y + 1,{\text{ }}du = 2dy \cr & \int {\frac{y}{{\sqrt {2y + 1} }}} dy = \int {\frac{{\left( {u - 1} \right)/2}}{{\sqrt u }}} \left( {\frac{1}{2}du} \right) \cr & = \frac{1}{4}\int {\frac{{u - 1}}{{{u^{1/2}}}}} du \cr & = \frac{1}{4}\int {\left( {{u^{1/2}} - {u^{ - 1/2}}} \right)} du \cr & {\text{find antiderivative }} \cr & = \frac{1}{4}\left( {\frac{{{u^{3/2}}}}{{3/2}} - \frac{{{u^{1/2}}}}{{1/2}}} \right) + C \cr & = \frac{{{u^{3/2}}}}{6} - \frac{{{u^{1/2}}}}{2} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = 2y + 1 \cr & = \frac{{{{\left( {2y + 1} \right)}^{3/2}}}}{6} - \frac{{{{\left( {2y + 1} \right)}^{1/2}}}}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.