Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 2 - The Derivative - 2.7 Implicit Differentiation - Exercises Set 2.7 - Page 166: 15

Answer

$y'' = \frac{{2y}}{{{x^2}}}$

Work Step by Step

$$\eqalign{ & {x^3}{y^3} - 4 = 0 \cr & {x^3}{y^3} = 4 \cr & {\text{differentiate both sides}} \cr & \left( {{x^3}{y^3}} \right)' = \left( 4 \right)' \cr & {\text{product rule}} \cr & {x^3}\left( {3{y^2}y'} \right) + 3{x^2}{y^3} = 0 \cr & 3{x^3}{y^2}y' + 3{x^2}{y^3} = 0 \cr & {\text{find }}y' \cr & 3{x^3}{y^2}y' = - 3{x^2}{y^3} \cr & y' = \frac{{ - 3{x^2}{y^3}}}{{3{x^3}{y^2}}} \cr & y' = - \frac{y}{x} \cr & {\text{find }}y'' \cr & y'' = - \left( {\frac{y}{x}} \right)' \cr & {\text{quotient rule }} \cr & \left( {\frac{u}{v}} \right)' = \frac{{vu' - uv'}}{{{v^2}}} \cr & y'' = - \frac{{x\left( y \right)' - y\left( x \right)'}}{{{x^2}}} \cr & y'' = - \frac{{xy' - y}}{{{x^2}}} \cr & {\text{replace }}y' = - \frac{y}{x} \cr & y'' = - \frac{{x\left( { - \frac{y}{x}} \right) - y}}{{{x^2}}} \cr & {\text{simplify}} \cr & y'' = - \frac{{ - y - y}}{{{x^2}}} \cr & y'' = - \frac{{ - 2y}}{{{x^2}}} \cr & y'' = \frac{{2y}}{{{x^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.