Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 7 - Symmetric Matrices and Quadratic Forms - 7.1 Exercises - Page 401: 12

Answer

Since A$A^{T}$ = I, the matrix is orthogonal. $A^{-1}$= $\begin{bmatrix} .5 & .5 & .5 & .5\\ .5 & .5 & -.5 & -.5\\ -.5 & .5 & -.5 & .5\\ -.5 & .5 & .5 & -.5 \end{bmatrix}$

Work Step by Step

If a matrix is orthogonal, then A$A^{T}$ = I. If a matrix is orthogonal, then the inverse of the matrix is equal to $A^{T}$. First, we determine if A$A^{T}$ = I. A = $\begin{bmatrix} .5 & .5 & -.5 & -.5\\ .5 & .5 & .5 & .5\\ .5 & -.5 & -.5 & .5\\ .5 & -.5 & .5 & -.5 \end{bmatrix}$ $A^{T}$ = $\begin{bmatrix} .5 & .5 & .5 & .5\\ .5 & .5 & -.5 & -.5\\ -.5 & .5 & -.5 & .5\\ -.5 & .5 & .5 & -.5 \end{bmatrix}$ A$A^{T}$ = $\begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix}$ Since A$A^{T}$ = I, the matrix is orthogonal. Since the matrix is orthogonal. $A^{-1}$ = $A^{T}$, so $A^{-1}$= $\begin{bmatrix} .5 & .5 & .5 & .5\\ .5 & .5 & -.5 & -.5\\ -.5 & .5 & -.5 & .5\\ -.5 & .5 & .5 & -.5 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.