Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 6 - Orthogonality and Least Squares - 6.7 Exercises - Page 385: 16

Answer

See solution

Work Step by Step

$||\vec{u}-\vec{v}||^2=\langle \vec{u}-\vec{v},\vec{u}-\vec{v} \rangle=\langle \vec{u},\vec{u}-\vec{v} \rangle+\langle -\vec{v},\vec{u}-\vec{v} \rangle=\langle \vec{u},\vec{u}-\vec{v} \rangle-\langle \vec{v},\vec{u}-\vec{v} \rangle$ $\langle \vec{u},\vec{u}-\vec{v} \rangle=\langle \vec{u}-\vec{v},\vec{u} \rangle=\langle \vec{u},\vec{u}\rangle+\langle -\vec{v},\vec{u} \rangle=\langle \vec{u},\vec{u}\rangle-\langle \vec{v},\vec{u} \rangle$ $\langle \vec{v},\vec{u}-\vec{v} \rangle=\langle \vec{u}-\vec{v},\vec{v} \rangle=\langle \vec{u},\vec{v}\rangle+\langle -\vec{v},\vec{v} \rangle=\langle \vec{u},\vec{v}\rangle-\langle \vec{v},\vec{v} \rangle$ Plugging back into the original equation, we get $||\vec{u}-\vec{v}||^2=\langle \vec{u},\vec{u}-\vec{v} \rangle-\langle \vec{v},\vec{u}-\vec{v} \rangle=\langle \vec{u},\vec{u}\rangle-\langle \vec{v},\vec{u} \rangle-\langle \vec{u},\vec{v}\rangle+\langle \vec{v},\vec{v} \rangle=\langle \vec{u},\vec{u}\rangle-2\langle \vec{u},\vec{v}\rangle+\langle \vec{v},\vec{v} \rangle$ $\langle \vec{u},\vec{u}\rangle=||\vec{u}||^2=1$ $\langle \vec{v},\vec{v}\rangle=||\vec{v}||^2=1$ because $\vec{u}$ and $\vec{v}$ are normal vectors. $\langle \vec{u},\vec{v}\rangle=0$ because $\vec{u}$ and $\vec{v}$ and orthogonal. Therefore, $||\vec{u}-\vec{v}||=\sqrt{2}$ Axioms used by order: 2, 3, 2, 3, 2, 3, 1
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.