Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 5 - Eigenvalues and Eigenvectors - 5.4 Exercises - Page 295: 6

Answer

a. $2-t+3t^2-t^3+t^4$ b. See solution c. The matrix for T relative to the given bases is $M=\begin{bmatrix} 1&0&0\\0&1&0\\1&0&1\\0&1&0\\0&0&1 \end{bmatrix}$

Work Step by Step

a. $T(2-t+t^2)=(2-t+t^2)+t^2(2-t+t^2)=$$2-t+3t^2-t^3+t^4$ b. Let c and d be scalars and $\vec{u}$ and $\vec{v}$ be vectors $T(c\vec{u}+d\vec{v})=(c\vec{u}+d\vec{v})+t^2(c\vec{u}+d\vec{v})=$$ c\vec{u}+d\vec{v}+t^2c\vec{u}+t^2d\vec{v}= c(\vec{u}+t^2\vec{u})+d(\vec{v}+t^2\vec{v})=$ $cT(\vec{u})+dT(\vec{v})$ c. Let basis C be $\{1,t,t^2,t^3,t^4\}$ $T(1)=1+t^2$ $[T(1)]_C=\begin{bmatrix} 1\\0\\1\\0\\0 \end{bmatrix}$ $T(t)=t+t^3$ $[T(t)]_C=\begin{bmatrix} 0\\1\\0\\1\\0 \end{bmatrix}$ $T(t^2)=t^2+t^4$ $[T(t^2)]_C=\begin{bmatrix} 0\\0\\1\\0\\1 \end{bmatrix}$ The matrix for T relative to the given bases is $M=\begin{bmatrix} 1&0&0\\0&1&0\\1&0&1\\0&1&0\\0&0&1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.