Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 4 - Vector Spaces - 4.5 Exercises - Page 231: 5

Answer

$\mathscr{B}$={$\begin{bmatrix} 1 \\2\\-1\\-3 \end{bmatrix}$, $\begin{bmatrix} -4 \\5\\0\\7 \end{bmatrix}$} The dimension of the basis is 2.

Work Step by Step

We are given that every vector $\vec{x}$ can be expressed by $\vec{x}$=$ \begin{bmatrix}a- 4b-2c \\ 2a +5b-4c\\-a+2c\\-3a+7b+6c\end{bmatrix}$ = $\mathit{a}$ $\begin{bmatrix} 1 \\2\\-1\\-3 \end{bmatrix}$ + $\mathit{b}$ $\begin{bmatrix} -4 \\5\\0\\7 \end{bmatrix}$ + $\mathit{c}$ $\begin{bmatrix} -2 \\-4\\2\\6 \end{bmatrix}$ Every vector can be written as a linear combination of the vectors $\begin{bmatrix} 1 \\2\\-1\\-3 \end{bmatrix}$, $\begin{bmatrix} -4 \\5\\0\\7 \end{bmatrix}$, $\begin{bmatrix} -2 \\-4\\2\\6 \end{bmatrix}$. However, by inspection, it is easy to see that the set is linearly dependent and therefore cannot be a basis: -2*$\begin{bmatrix} 1 \\2\\-1\\-3 \end{bmatrix}$= $\begin{bmatrix} -2 \\-4\\2\\6 \end{bmatrix}$. So we must use the Spanning Set Theorem; we'll remove the last vector from the set. Thus, we get that the basis contains the following vectors: $\mathscr{B}$={$\begin{bmatrix} 1 \\2\\-1\\-3 \end{bmatrix}$, $\begin{bmatrix} -4 \\5\\0\\7 \end{bmatrix}$} Then since the basis contains two vectors, the dimension of the basis is 2.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.