Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 4 - Vector Spaces - 4.5 Exercises - Page 231: 3

Answer

Basis, $B=\left\{\begin{bmatrix}0\\1\\0\\1\end{bmatrix},\begin{bmatrix}0\\-1\\1\\2\end{bmatrix},\begin{bmatrix}2\\0\\-3\\0\end{bmatrix}\right\}$ As there are 3 pivot columns the dimension is 3

Work Step by Step

We are required to find the basis and state the dimension Let the given subspace be represented by a vector $\mathbf{\vec{z}}$ such that: $\mathbf{\vec{z}}=\begin{bmatrix}2c\\a-b\\b-3c\\a+2b\end{bmatrix} $ Writing the given set in parametric form; $\mathbf{\vec{z}}=\begin{bmatrix}2c\\a-b\\b-3c\\a+2b\end{bmatrix}=a\begin{bmatrix}0\\1\\0\\1\end{bmatrix}+b\begin{bmatrix}0\\-1\\1\\2\end{bmatrix}+c\begin{bmatrix}2\\0\\-3\\0\end{bmatrix}$ The given subspace is a linear combination of three vectors, $\begin{bmatrix}0\\1\\0\\1\end{bmatrix},\begin{bmatrix}0\\-1\\1\\2\end{bmatrix}and\begin{bmatrix}2\\0\\-3\\0\end{bmatrix}$ from the vectors let us form an augmented matrix $\mathbf{M}$ and row reduce it to echelon form , $\mathbf{M}=\begin{bmatrix}0&0&2\\1&-1&0\\0&1&-3\\1&2&0\end{bmatrix}\sim\begin{bmatrix}0&0&2\\1&-1&0\\0&1&-3\\0&0&1\end{bmatrix}$ We have 3 pivot elements hence the vectors are linearly independent, and the 3 vectors form the basis for the set. $B=\left\{\begin{bmatrix}0\\1\\0\\1\end{bmatrix},\begin{bmatrix}0\\-1\\1\\2\end{bmatrix},\begin{bmatrix}2\\0\\-3\\0\end{bmatrix}\right\}$ As there are 3 pivot columns the dimension is 3
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.