Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 4 - Vector Spaces - 4.3 Exercises - Page 215: 4

Answer

The resulting matrix has 3 pivot rows and hence it is invertible by the matrix theorem. this shows that the columns form a basis

Work Step by Step

From the given Vectors; $\begin{bmatrix}2\\-2\\1\end{bmatrix},\begin{bmatrix}1\\-3\\2\end{bmatrix},\begin{bmatrix}-7\\5\\4\end{bmatrix}$ We need to inspect the vectors to determine which sets in bases for $R^3$ We can row reduce the matrix by combining the vectors to form a Matrix $M$ by forming the Matrix $\mathbf{M}$ $\mathbf{M}=\begin{bmatrix}2&1&-7\\-2&-3&5\\1&2&4\end{bmatrix}$ $\mathbf{M}=\begin{bmatrix}2&1&{ - 7}\\0&{ - 2}&{ - 2}\\0&3&{15}\end{bmatrix}$ ; $R_{2}=(R_{2}+R_{1})$ and $R_{3}=(2R_{3}-R_{1})$ $\begin{array}{l}M = \left[ {\begin{array}{*{20}{c}}2&1&{ - 7}\\0&1&1\\0&1&5\end{array}} \right]\,\,\,;\,\,\,\left\{ \begin{array}{l}{R_2} = \dfrac{{{R_2}}}{{ - 2}}\\{R_3} = \dfrac{{{R_3}}}{3}\end{array} \right\}\\ = \left[ {\begin{array}{*{20}{c}}2&0&{ - 8}\\0&1&1\\0&0&4\end{array}} \right]\,\,\,;\,\,\,\left\{ \begin{array}{l}{R_1} = {R_1} - {R_2}\\{R_3} = {R_3} - {R_2}\end{array} \right\}\\ = \left[ {\begin{array}{*{20}{c}}1&0&{ - 4}\\0&1&1\\0&0&1\end{array}} \right]\,;\,\,\,\left\{ \begin{array}{l}{R_2} = \dfrac{{{R_2}}}{2}\\{R_3} = \dfrac{{{R_3}}}{4}\end{array} \right\}\\ = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\,;\,\,\,\left\{ \begin{array}{l}{R_1} = {R_1} + 4{R_3}\\{R_2} = {R_2} - {R_3}\end{array} \right\}\end{array}$ The resulting matrix has 3 pivot rows and hence it is invertible by the matrix theorem. this shows that the columns form a basis
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.