Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 4 - Vector Spaces - 4.1 Exercises - Page 198: 16

Answer

$\left[\begin{array}{l} 0\\ 0\\ 0 \end{array}\right]\not\in W$ $W$ is not a subspace of $\mathbb{R}^{3}.$

Work Step by Step

(a) Is the zero vector of $\mathbb{R}^{3}$ in $W$? Do a,b$\in \mathbb{R}$ exist such that $\left[\begin{array}{l} -a+1\\ a-6b\\ a+2b \end{array}\right]=\left[\begin{array}{l} 0\\ 0\\ 0 \end{array}\right]$ This vector equality implies a linear system of three equations, with the augmented matrix $\left[\begin{array}{llll} -1 & 0 & | & -1\\ 1 & -6 & | & 0\\ 1 & 2 & | & 0 \end{array}\right]\left\{\begin{array}{l} \times(-1).\\ \leftarrow(R_{2}+R_{1}).\\ \leftarrow(R_{3}+R_{1}). \end{array}\right.$ $\left[\begin{array}{llll} 1 & 0 & | & 1\\ 0 & -6 & | & -1\\ 0 & 2 & | & -1 \end{array}\right]\left\{\begin{array}{l} .\\ \leftarrow(R_{2}+3R_{3}).\\ . \end{array}\right.$ $\left[\begin{array}{llll} 1 & 0 & | & 1\\ 0 & 0 & | & -4\\ 0 & 2 & | & -1 \end{array}\right]$ Swapping $R_{2}$ and $R_{3}$ we have 0 0 $|$ -4 in the last row, so this is an incosistent system. $\left[\begin{array}{l} 0\\ 0\\ 0 \end{array}\right]\not\in W$ $W$ is not a subspace of $\mathbb{R}^{3}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.