Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 3 - Determinants - Supplementary Exercises - Page 188: 3

Answer

0

Work Step by Step

Let \[A=\left|\begin{array}{ccc} 1&a&b+c\\ 1&b&a+c\\ 1&c&a+b\end{array}\right|\] Applying column operation on $A$ \[C_3\rightarrow C_3+C_2\] \[=\left|\begin{array}{ccc} 1&a&a+b+c\\ 1&b&a+b+c\\ 1&c&a+b+c\end{array}\right|\] We will use the property of determinant \[\left|\begin{array}{ccc} x_1&y_1&kz_1\\ x_2&y_2&kz_2\\ x_3&y_3&kz_3\end{array}\right|=k\left|\begin{array}{ccc} x_1&y_1&z_1\\ x_2&y_2&z_2\\ x_3&y_3&z_3\end{array}\right|\;\;\;...(1)\] Using (1) \[\left|\begin{array}{ccc} 1&a&a+b+c\\ 1&b&a+b+c\\ 1&c&a+b+c\end{array}\right|=(a+b+c)\left|\begin{array}{ccc} 1&a&1\\ 1&b&1\\ 1&c&1\end{array}\right|\] Now $C_1$ and $C_3$ are identical so value of determinant on R.H.S. will be zero \[\Rightarrow(a+b+c)\left|\begin{array}{ccc} 1&a&1\\ 1&b&1\\ 1&c&1\end{array}\right|=(a+b+c)(0)=0\] Hence $A=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.