Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.7 Exercises - Page 147: 21

Answer

$\left[\begin{array}{c}R \\ G \\ B\end{array}\right]=\left[\begin{array}{ccc}2.2586 & -1.0395 & -.3473 \\ -1.3495 & 2.3441 & .0696 \\ .0910 & -.3046 & 1.2777\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$

Work Step by Step

Every matrix equation of the type $A X=Y$ can be tranformed to $X=$ $A^{-1} Y$ As: $\left[\begin{array}{l}R \\ G \\ B\end{array}\right]=\left[\begin{array}{lll}.61 & .29 & .15 \\ .35 & .59 & .063 \\ .04 & .12 & .787\end{array}\right]^{-1}\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$ Input matrix $A=\left[\begin{array}{ccc}.61 & .29 & .15 \\ .35 & .59 & .063 \\ .04 & .12 & .787\end{array}\right]$ in Matlab and use command inv $(A)$ to get its inverse. Result is: \[ \left[\begin{array}{c} R \\ G \\ B \end{array}\right]=\left[\begin{array}{ccc} 2.2586 & -1.0395 & -.3473 \\ -1.3495 & 2.3441 & .0696 \\ .0910 & -.3046 & 1.2777 \end{array}\right]\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right] \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.