Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.7 Exercises - Page 146: 10

Answer

See explanation

Work Step by Step

Make the transformation matrices in homogeneous cordinates for the dilation, rotation, and translation be called respectively $D,$ and $R,$ and $T$. \[ D=\left[\begin{array}{lll} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{array}\right], R=\left[\begin{array}{ccc} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{array}\right], T=\left[\begin{array}{ccc} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{array}\right] \] Get products of these matrices to see which transformations are commute. \[ \begin{array}{l} D R=\left[\begin{array}{ccc} s \cos \varphi & -s \sin \varphi & 0 \\ s \sin \varphi & s \cos \varphi & 0 \\ 0 & 0 & 1 \end{array}\right] \\ R D=\left[\begin{array}{ccc} s \cos \varphi & -s \sin \varphi & 0 \\ s \sin \varphi & s \cos \varphi & 0 \\ 0 & 0 & 1 \end{array}\right] \end{array} \] $D$ and $R$ commute. \[ D T=\left[\begin{array}{ccc} s & 0 & s h \\ 0 & s & s k \\ 0 & 0 & 1 \end{array}\right] \] \[ T D=\left[\begin{array}{lll} s & 0 & h \\ 0 & s & k \\ 0 & 0 & 1 \end{array}\right] \] $D \text { and } T \text { do no commute (they commute only when } s=1)$ \[ \begin{array}{l} R T=\left[\begin{array}{ccc} \cos \varphi & -\sin \varphi & h \cos \varphi-k \sin \varphi \\ \sin \varphi & \cos \varphi & h \sin \varphi+k \cos \varphi \\ 0 & 0 & 1 \end{array}\right] \\ T R=\left[\begin{array}{ccc} \cos \varphi & -\sin \varphi & h \\ \sin \varphi & \cos \varphi & k \\ 0 & 0 & 1 \end{array}\right] \end{array} \] $T \text { and } R \text { do not commute (they commute only when } \varphi=0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.