Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 2 - Matrix Algebra - 2.3 Exercises - Page 118: 39

Answer

If T is an invertible linear transformation, then its standard matrix $\mathrm{A}$ is an invertible matrix. If A is square and invertible, then, by ISM.(i), $\mathrm{i}.\quad$ The linear transformation $x\mapsto Ax$ maps $\mathbb{R}^{n}$ onto $\mathbb{R}^{n}$. Since $\mathrm{T}$ maps $\mathbb{R}^{n}$ onto $\mathbb{R}^{n}$, for any $\mathrm{v} \in \mathrm{R}^{n}$ there exists an $\mathrm{x}\in \mathrm{R}^{n}$ such that $\mathrm{v}=T(\mathrm{x})$. Given $\mathrm{S}(\mathrm{T}(\mathrm{x}))=\mathrm{x}$, it follows that $\mathrm{S}(\mathrm{v})=\mathrm{x}$. Given $\mathrm{U}(\mathrm{T}(\mathrm{x}))=\mathrm{x}$, it follows that $\mathrm{U}(\mathrm{v})=\mathrm{x}$. So, for any $\mathrm{v} \in \mathrm{R}^{n}$, we have $\mathrm{S}(\mathrm{v})=\mathrm{U}(\mathrm{v})$, which we needed to prove.

Work Step by Step

No extra steps, since the answer contains the proof.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.