Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.9 Exercises - Page 79: 9

Answer

$A=\left(\begin{array}{cc}0 & -1 \\ -1 & 2\end{array}\right)$

Work Step by Step

\[ T(\mathbf{x})=A \mathbf{x}=A_{2} A_{1} \mathbf{x} \] $T$ can be viewed as the composition of two transformations thus let's split up the standard matrix $A=A_{2} A_{1}$ \[ \begin{array}{l} T_{1}\left(\mathbf{e}_{1}\right)=\mathbf{e}_{1} \\ T_{1}\left(\mathbf{e}_{2}\right)=\mathbf{e}_{2}-\mathbf{e}_{1} \end{array} \] The first transformation $T_{1},$ leaves e $_{1}$ unchanged and maps $\mathbf{e}_{2}$ into $\mathbf{e}_{2}-\mathbf{e}_{1}$ \[ A_{1}=\left(\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right) \] Thus the first column of $A_{1}$ is $\mathbf{e}_{1},$ and the second column is $\mathbf{e}_{2}-\mathbf{e}_{1}$ \[ \begin{array}{l} T_{2}\left(\mathbf{e}_{1}\right)=-\mathbf{e}_{2} \\ T_{2}\left(\mathbf{e}_{2}\right)=-\mathbf{e}_{1} \end{array} \] The second transformation $T_{2},$ reflects all points through the line $x_{2}=-x_{1},$ or $f(x)=-x$ for an alternative notation \[ A_{2}=\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right) \]So the first column of $A_{2}$ is $-\mathbf{e}_{2},$ and the second column is $-\mathbf{e}_{1}$ \[ \begin{array}{l} T(\mathbf{x})=T_{2}\left(T_{1}(\mathbf{x})\right)=A_{2} A_{1} \mathbf{x} \\ =\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)\left(\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right) \mathbf{x} \end{array} \] Now form $T$ with $T_{1,2}$ by using matrix multiplication to get $A$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.