Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 0-32198-238-X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.1 Exercises: 15

Answer

The system is consistent.

Work Step by Step

The procedure is shown with the matrix notation for simpler understanding. $x_{1} + 3x_{3} = 2 $ $x_{2} - 3x_{4} = 3$ $-2x_{2} + 3x_{3} + 2x_{4} = 1$ $3x_{1} + 7x_{4} = -5$ This can be depicted in the augmented matrix notation as follows : $\begin{bmatrix} 1 & 0 & 3 & 0 & 2\\ 0 & 1 & 0 & -3 & 3\\ 0 & -2 & 3 & 2 & 1\\ 3 & 0 & 0 & 7 & -5 \end{bmatrix}$ To get an $x_{1}$ term in the second row, interchange row 2 and row 4: $\begin{bmatrix} 1 & 0 & 3 & 0 & 2\\ 3 & 0 & 0 & 7 & -5\\ 0 & 1 & 0 & -3 & 3\\ 0 & -2 & 3 & 2 & 1 \end{bmatrix}$ To eliminate the $3x_{1}$ term in the second row, add $-3$ times row 1 to row 2: $\begin{bmatrix} 1 & 0 & 3 & 0 & 2\\ 0 & 0 & -9 & 7 & -11\\ 0 & 1 & 0 & -3 & 3\\ 0 & -2 & 3 & 2 & 1 \end{bmatrix}$ To get an $x_{2}$ term in the second row, interchange row 2 and row 3: $\begin{bmatrix} 1 & 0 & 3 & 0 & 2\\ 0 & 1 & 0 & -3 & 3\\ 0 & 0 & -9 & 7 & -11\\ 0 & -2 & 3 & 2 & 1 \end{bmatrix}$ To get an $x_{2}$ term in the third row, interchange row 3 and row 4: $\begin{bmatrix} 1 & 0 & 3 & 0 & 2\\ 0 & 1 & 0 & -3 & 3\\ 0 & -2 & 3 & 2 & 1\\ 0 & 0 & -9 & 7 & -11 \end{bmatrix}$ To eliminate the $-2x_{2}$ term in the third row, add $2$ times row 2 to row 3: $\begin{bmatrix} 1 & 0 & 3 & 0 & 2\\ 0 & 1 & 0 & -3 & 3\\ 0 & 0 & 3 & -4 & 7\\ 0 & 0 & -9 & 7 & -11 \end{bmatrix}$ To eliminate the $-9x_{3}$ term in the fourth row, add $3$ times row 3 to row 4: $\begin{bmatrix} 1 & 0 & 3 & 0 & 2\\ 0 & 1 & 0 & -3 & 3\\ 0 & 0 & 3 & -4 & 7\\ 0 & 0 & 0 & -5 & 10 \end{bmatrix}$ In the equation form, $x_{1} + 3x_{3} = 2 $ $x_{2} - 3x_{4} = 3$ $3x_{3} - 4x_{4} = 7$ $-5x_{4} = 10$ Now, we know the value of $x_{4}$. Back substituting this value into the other equations, we can subsequently find the values of $x_{3}$, $x_{2}$ and $x_{1}$. Hence, a solution exists. Thus, the system is consistent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.