Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 11 - Section 11.2 - Arithmetic and Geometric Sequences - Exercise Set: 23

Answer

$a_{9}= 20$

Work Step by Step

$a_{n}$ of the arithmetic progression is $a_{n} = a_{1} + (n-1)d$ Second term of arithmetic progression is $a_{2} =-1$ $a_{2} = a_{1} + (2-1)d$ $a_{2} = a_{1} + d$ $ a_{1} + d =-1$ Equation $(1)$ Fourth term of arithmetic progression is $a_{4} =5$ $a_{4} = a_{1} + (4-1)d$ $a_{4} = a_{1} + 3d$ $ a_{1} +3d =5$ Equation $(2)$ Subtract Equation $(1)$ from Equation $(2)$ $ a_{1} +3d -(a_{1} + d ) = 5 - (-1)$ $ a_{1} +3d -a_{1} - d = 5 +1 $ $2d=6$ $d=3$ Substituting $d$ value in Equation $(1)$ $ a_{1} + d =-1$ $ a_{1} + 3 =-1$ $ a_{1} =-1-3$ $ a_{1} =-4$ Using $ a_{1} $ , $d$ values and $n=9$ , $a_{9} = a_{1} + (9-1)d$ $a_{9} = -4 + (8)3$ $a_{9} =-4+24$ $a_{9} = 20$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.