# Chapter 7 - Section 7.5 - Multiplying and Dividing Radical Expressions - 7.5 Exercises: 93

$\dfrac{4\sqrt{x}+8\sqrt{y}}{x-4y}$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$ To rationalize the given radical expression, $\dfrac{4}{\sqrt{x}-2\sqrt{y}} ,$ multiply the numerator and the denominator by the conjugate of the denominator. Then use special products to simplify the result. $\bf{\text{Solution Details:}}$ Multiplying the numerator and the denominator of the given expression by the conjugate of the denominator, the expression above is equivalent to \begin{array}{l}\require{cancel} \dfrac{4}{\sqrt{x}-2\sqrt{y}} \cdot\dfrac{\sqrt{x}+2\sqrt{y}}{\sqrt{x}+2\sqrt{y}} \\\\= \dfrac{4(\sqrt{x}+2\sqrt{y})}{(\sqrt{x}-2\sqrt{y})(\sqrt{x}+2\sqrt{y})} .\end{array} Using the product of the sum and difference of like terms which is given by $(a+b)(a-b)=a^2-b^2,$ the expression above is equivalent \begin{array}{l}\require{cancel} \dfrac{4(\sqrt{x}+2\sqrt{y})}{(\sqrt{x})^2-(2\sqrt{y})^2} \\\\= \dfrac{4(\sqrt{x}+2\sqrt{y})}{x-4y} .\end{array} Using the Distributive Property which is given by $a(b+c)=ab+ac,$ the expression above is equivalent to \begin{array}{l}\require{cancel} \dfrac{4(\sqrt{x})+4(2\sqrt{y})}{x-4y} \\\\= \dfrac{4\sqrt{x}+8\sqrt{y}}{x-4y} .\end{array}

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.