Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 7 - Section 7.5 - Multiplying and Dividing Radical Expressions - 7.5 Exercises: 68

Answer

$-\dfrac{5m\sqrt{3mp}}{p}$

Work Step by Step

$\bf{\text{Solution Outline:}}$ To rationalize the given radical expression, $ -\sqrt{\dfrac{75m^3}{p}} ,$ multiply the numerator and the denominator by an expression equal to $1$ which will make the denominator a perfect power of the index. $\bf{\text{Solution Details:}}$ Multiplying the numerator and the denominator by an expression equal to $1$ which will make the denominator a perfect power of the index results to \begin{array}{l}\require{cancel} -\sqrt{\dfrac{75m^3}{p}\cdot\dfrac{p}{p}} \\\\= -\sqrt{\dfrac{75m^3p}{p^2}} .\end{array} Rewriting the radicand using an expression that contains a factor that is a perfect power of the index results to \begin{array}{l}\require{cancel} -\sqrt{\dfrac{25m^2}{p^2}\cdot3mp} \\\\= -\sqrt{\left(\dfrac{5m}{p}\right)^2\cdot3mp} .\end{array} Extracting the root of the radicand that is a perfect power of the index results to \begin{array}{l}\require{cancel} -\dfrac{5m}{p}\sqrt{3mp} \\\\= -\dfrac{5m\sqrt{3mp}}{p} .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.