Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 5 - Section 5.4 - A General Approach to Factoring - 5.4 Exercises: 53

Answer

$8mn$

Work Step by Step

$\bf{\text{Solution Outline:}}$ To factor the given expression, $ (2m+n)^2-(2m-n)^2 ,$ use the factoring of the difference of $2$ squares. $\bf{\text{Solution Details:}}$ The expressions $ (2m+n)^2 $ and $ (2m-n)^2 $ are both perfect squares (the square root is exact) and are separated by a minus sign. Hence, $ (2m+n)^2-(2m-n)^2 ,$ is a difference of $2$ squares. Using the factoring of the difference of $2$ squares which is given by $a^2-b^2=(a+b)(a-b),$ the expression above is equivalent to \begin{array}{l}\require{cancel} [(2m+n)+(2m-n)][(2m+n)-(2m-n)] \\\\= (2m+n+2m-n)(2m+n-2m+n) \\\\= (4m)(2n) \\\\= 8mn .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.