Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 1 - Section 1.4 - Further Applications of Linear Equations - 1.4 Exercises: 31

Answer

$(3x+7)^o=40^o ,\\ (9x-4)^o=95^o ,\\ \left( 4x+1 \right)^o=45^o$

Work Step by Step

$\bf{\text{Solution Outline:}}$ Equate the sum of the angles to $180$ and solve for $x.$ Then substitute the value of $x$ in the following given angles: \begin{array}{l}\require{cancel} (3x+7)^o ,\\ (9x-4)^o ,\\ \left( 4x+1 \right)^o .\end{array} $\bf{\text{Solution Details:}}$ Since the sum of the angles of a triangle is always $180^o,$ then equate the sum of the given angles to $180.$ That is, \begin{array}{l}\require{cancel} (3x+7)+(9x-4)+\left( 4x+1 \right)=180 .\end{array} Using the properties of equality to isolate the variable results to \begin{array}{l}\require{cancel} 3x+9x+4x=180-7+4-1 \\\\ 16x=176 \\\\ x=\dfrac{176}{16} \\\\ x=11 .\end{array} Substituting $x= 11 $ in the angle $ (3x+7)^o $ results to \begin{array}{l}\require{cancel} (3\cdot11+7)^o \\\\= (33+7)^o \\\\= 40^o .\end{array} Substituting $x= 11 $ in the angle $ (9x-4)^o $ results to \begin{array}{l}\require{cancel} (9\cdot11-4)^o \\\\= (99-4)^o \\\\= 95^o .\end{array} Substituting $x= 11 $ in the angle $ (4x+1)^o $ results to \begin{array}{l}\require{cancel} (4\cdot11+1)^o \\\\= (44+1)^o \\\\= 45^o .\end{array} Hence, the measures of the angles of the triangle are \begin{array}{l}\require{cancel} (3x+7)^o=40^o ,\\ (9x-4)^o=95^o ,\\ \left( 4x+1 \right)^o=45^o .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.