College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter P, Prerequisites - Section P.7 - Rational Expressions - P.7 Exercises: 58

Answer

$\frac{x^{2}+x+4}{(x-1)(x+1)^{2}}$

Work Step by Step

We form a common denominator, then add, factor, and simplify: $\displaystyle \frac{1}{x+1}-\frac{2}{(x+1)^{2}}+\frac{3}{x^{2}-1}=\frac{1}{x+1}-\frac{2}{(x+1)^{2}}+\frac{3}{(x-1)(x+1)} =\frac{(x+1)(x-1)}{(x-1)(x+1)^{2}}+\frac{-2(x-1)}{(x-1)(x+1)^{2}}+\frac{3(x+1)}{(x-1)(x+1)^{2}} =\frac{x^{2}-1}{(x-1)(x+1)^{2}}+\frac{-2x+2}{(x-1)(x+1)^{2}}+\frac{3x+3}{(x-1)(x+1)^{2}}=\frac{x^{2}-1-2x+2+3x+3}{(x-1)(x+1)^{2}}=\frac{x^{2}+x+4}{(x-1)(x+1)^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.