#### Answer

$\frac{4}{x} = \frac{5}{2x} + 3 ; x \ne 0;$
$x = \frac{1}{2} $

#### Work Step by Step

$\frac{4}{x} = \frac{5}{2x} + 3 ; x \ne 0;$
Least Common Denominator is $2x$
Multiply both sides by $2x$
$2x(\frac{4}{x}) = 2x(\frac{5}{2x} + 3 ) ; x \ne 0;$
$8 = 2x(\frac{5}{2x}) + 2x(3)$
$8 = 5+ 6x$
$6x = 8-5$
$6x = 3$
$x = \frac{3}{6}$
$x = \frac{1}{2}$
Our only restriction is $x \ne 0$
$x = \frac{1}{2}$ is the solution of the equation.