Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 12 - Section 12.6 - Properties of Logarithms - Exercise Set: 32

Answer

$log_{8}\frac{15}{4}$

Work Step by Step

We know that $log_{b}xy=log_{b}x+log_{b}y$ (where $x$, $y$, and $b$ are positive real numbers and $b\ne1$). Therefore, $log_{8}5+log_{5}15-log_{8}20=log_{8}(5\times15)-log_{8}20=log_{8}75-log_{8}20$. We know that $log_{b}\frac{x}{y}=log_{b}x-log_{b}y$ (where $x$, $y$, and $b$ are positive real numbers and $b\ne1$). Therefore, $log_{8}75-log_{8}20=log_{8}\frac{75}{20}=log_{8}\frac{75\div5}{20\div5}=log_{8}\frac{15}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.